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Abstract. In this paper we introduce a new representation of orthogonal matrices.
We show that any orthogonal matrix can be represented in the form Q@ = I — YSYT,
which we call the basis-kernel representation of ). We show that the kernel S can be
chosen to be triangular and show how the familiar representation of an orthogonal matrix
as a product of Householder matrices can be directly derived from a representation with
triangular kernel. ~ We also show that there exists an, in some sense, minimal orthogonal
transformation for solving the block elimination problem. We explore how the basis Y
determines the subspaces that ) acts on in a nontrivial fashion, and how S determines
the way ) acts on this subspace. We derive a canonical representation that explicitly
shows how (@) partitions R” into three invariant subspaces in which 1t acts as the identity,
a reflector, and a rotator, respectively. We also derive a generalized Cayley representation
for arbitrary orthogonal matrices, which illuminates the degrees of freedom we have in
choosing orthogonal matrices acting on a predetermined subspace.
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1 Introduction

Orthogonal transformations are a well-known tool in numerical linear
algebra and are used extensively in decompositions such as the QR factor-
ization, tridiagonalization, bidiagonalization, Hessenberg reduction, or the
eigenvalue or singular value decomposition of a matrix (see, for example, [6,
10]). The orthogonal transformations employed are usually compositions of
the following elementary transformations:
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Givens Rotator:

B B cos(f) sin(0)
G=G(0)= ( —sin(f) cos(9) ) (1)

In the two-dimensional plane, application of G to a vector x amounts
to a clockwise rotation of = by an angle of 4.

Jacobi Reflector:

B [ cos(0) sin(6)
J=J(0) = ( sin(f) — cos(8) ) (2)

In the two-dimensional plane, application of J to a vector x amounts
to reflecting = with respect to the line spanned by the vector

(cos(8/2),sin(0/2))".
Householder Reflector:
H=H(v)=1- pov?, polvp =24. (3)

This representation of Householder matrices is used in the LINPACK [4]
and LAPACK [1] libraries. The condition on v and /8 in (3) covers all
choices for v and f that result in an orthogonal matrix H. In particular,
it includes the degenerate case § = 0 where H is the identity matrix /.
Note that the application of H to a vector x amounts to a reflection of

x with respect to the hyperplane R(v)*, the orthogonal complement
of the range R(v).

Each of the three well-known elementary transformations, when applied
to a matrix, implies a low-rank (rank 1 or 2) update of the matrix.

Givens rotators form a group under matrix multiplication with the iden-
tity matrix as the unit element of the group; in particular, the product of any
two Givens rotators is again a Givens rotator. Note that unless # = 0 mod 27,
(7(9) has no eigenvalue at 1. That is, except for the identity, a Givens reflec-
tor rotates every nonzero vector in the entire two-dimensional space.

In contrast, Jacobi reflectors are not closed under matrix multiplication.
As a matter of fact, the product of any two reflectors is a rotator. A Jacobi
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Figure 1: Reflectors

reflector can be represented as a rank-1 modification to the identity matrix,
namely,

JO)=1—(1—-J)=1-2yy", wherey= ( —cs(l)zgzg; ) . (4)

Unlike Givens rotation, a Jacobi reflector divides R? into two complementary
subspaces, acting as the identity on one of them and reflecting on the other:

B T € R(y)*,
Ja = { —x € R(y).

For an arbitrary vector @ € R*, J(#)z is therefore a reflection of x with
respect to the line R(y)t = R([cos(0/2),sin(0/2)]T). We may also say Jx
is the reflection of x along R(y), or simply along y. For the special Jacobi
reflector J(0), J(0) = J(27) = I — 2¢e9es. This is illustrated in Figure 1.

A Givens rotator () can always be represented as a product of two
Jacobi reflectors,

G0) = J(a)J(F), with f—a=60mod 2~.

In particular, G(8) = J(0).J(#). That is, G() can be decomposed as a reflec-
tion with respect to (cos(0/2),sin(0/2))* followed by another reflection with
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respect to (1,0)T. Thus G(f) can be represented as a rank-2 modification to
the identity matrix,

GO)=1-YSY™, (5)

with, for instance,

(1 ) mase ()

Householder reflectors are a direct generalization of Jacobi reflectors. For
each vector @, H(v)x is the reflection of a with respect to the hyperplane
R(v)t. The concept of reflectors was further developed by Schreiber and
Parlett [8] to block reflectors

Q=1-2YY", YW =1, YeR™* (6)

Note that the reflectors we have mentioned so far are all symmetric.
The representations (3), (4), and (6) for reflectors and (5) for rotators are
all special cases of the representation

Q=1-YSYT, Y e RmxE S e RME (7)

for an m x m orthogonal matrix. With a triangular matrix S, this representa-
tion was first introduced as the compact WY representation by Schreiber and
Van Loan [9], as a way of expressing the product of & Householder matrices
in a computationally more advantageous form.

If S is nonsingular and Y is of rank k, then @ acts on the space R(Y )+
as the identity and changes every nonzero vector in R(Y'), which we call the
active space of (). From the preceding discussion we see that Jacobi and
Householder reflectors have one-dimensional active subspaces, whereas, ex-
cept for the identity, Givens rotations have two-dimensional active subspaces.

We show in this paper that the representation (7), which we call the basis-
kernel representation, is a universal representation for any orthogonal matrix.
This is proved in the next section, and there we also introduce the so-called
orthogonality conditions on Y and S, which must be satisfied for the matrix
@ of (7) to be orthogonal. We prove further that any orthogonal matrix can
be expressed in basis-kernel form with a triangular kernel, and we show how
the familiar representation of orthogonal matrices as products of Householder
matrices can be readily deduced from this representation.  This theory is
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also used to show that, for an orthogonal matrix ¢) mapping a matrix A into
a matrix B, there is a “minimal” representation of () in that its associated
basis Y has a minimal number of columns. In Section 3 we describe in detail
how the basis ¥ and the kernel S’ characterize (). We also derive a canonical
form that makes explicit how () partitions R" into a couple of subspaces
in which it acts as the identity, a reflector or a rotator. In Section 4 we
derive a generalized form, applicable to arbitrary orthogonal matrices, of the
Cayley representation [5]. The generalized Cayley form shows that, in a
specified active space of dimension k, there are k(k—1)/2 degrees of freedom
in choosing a nonsymmetric matrix while there is one and only one symmetric
matrix. Finally, we comment on our results and outline directions of future
research.

2 The Basis-Kernel Representation of Orthogonal Matrices

Theorem 1 For any m xm orthogonal matriz () there exist a full-rank m x k
matriz Y and a nonsingular k x k matriz S, k < m, such that

Q:=Q,5)=1-YSY" (8)

Proof. If I —() is nonsingular, we may choose ¥ = [ and S = [ —(Q.
Otherwise, let X and Y be orthonormal bases of N (I—Q) and R(I—Q), the
null space and range of I —(), respectively. Then,

Q=<X,Y>(é135)()ﬁ),

for some orthogonal matrix /—5 that has no eigenvalue at 1. Therefore, S
is nonsingular and Q = I — Y SY'T, [

As already mentioned in the preceding section, we call R(Y') of (8) the
active subspace of () (which is uniquely defined by @ as to be seen later) and
denote it with A(Q). We define the degree of ) as the dimension of A(Q).
We call S the kernel of ), Y the basis, and (8) the basis-kernel representation
of ). So, for example, a Householder matrix (3) is an orthogonal matrix of
degree 1.

Let X, and X be two j-by-k matrices, 7 > k, such that XyTXS = [. Then,
YSYT = (YXyT)(XSSXST)(XyYT). Hence, a particular orthogonal matrix ¢
has many basis-kernel representations of the form of (8), and Y and S need
not necessarily be of full rank.



2.1 The Orthogonality Conditions

Like the condition on v and /3 in (3) for a Householder reflector, there is
a condition on Y and S that guarantees the orthogonality of Q(Y,5).

Lemma 2 1. The orthogonality condition
SYtyst =54 571 (9)

or
STYTy S =54 571 (10)

is a sufficient condition for the orthogonality of Q(Y,S).

2. The condition (9) and the condition (10) are equivalent.

3. When S is nonsingular, the orthogonality conditions can be expressed
in the unified form
YTy = 67t 4 571, (11)

Proof. Part 1 and 3. If we write Q = [ — Y SYT | then the condition (9)
implies QQT = I and the condition (10) implies QTQ = I. The expression of
(11) follows immediately from the conditions in Part 1 when S is nonsingular.

Part 2. Now assume S is of rank r < k. Let S = U( x O)VT be a

singular value decomposition of S with ¥ € R"™*" nonsingular. Then,

T (X V1T o Sn 512
s (3 ) (5 Y= (5 50,

where gn = ZVITUl is a square matrix, and glz = Z‘/ITUQ. The orthogonality
condition (9) can then be expressed as

S'11 S'12 T ngl 0 _ S'11 S'12 ngl 0
(0 0)(YU)(YU)(§1TQ0 Lo oo )TLsL o - (12)

The last equation implies that glz =0 andNthat §11Nmust be nonsingular.
Thus, S = U;S;; UL, Multiplying (12) by S;' and S;7 from the left and

right, respectively, we obtain
YU (YU = St + Sat
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Therefore, ) ) ) )
SHYU) (Y1) S = Si1 + ST,

and hence the condition (10). In the same fashion, (10) implies S,=0. m
Given Y, we now show some examples of choices for S such that the
orthogonality condition is satisfied.

Example 3 Q(Y,S) is orthogonal if
S =20y,
where BT denotes a pseudo-inverse of the matriz B [12].
Such a singular and symmetric kernel was first introduced in [8].

Example 4 Q(Y,S) is orthogonal if Y has no zero column and
S = [tril(YTY) 4 diag(Y'Y) /2],

or

S = [trin(YTY) + diag(Y'Y)/2]71,

where tril(A) (triu(A)) is the strictly lower (upper) triangular part of matrix
A, and diag(A) is the diagonal of matriz A.

Note that the triangularity of S and the orthogonality condition (11) together
imply that S is unique. One can see that, given Y, the triangular kernel is
easy to compute. As a matter of fact, it is the procedure for computing the
compact WY representation proposed in [13.7].

2.2 Regularity Assumption

The discussion following Theorem 1 and the examples above have shown
that Y and S need not necessarily be of full rank. On the other hand, we know
from Theorem 1 that for an orthogonal matrix, there is always a basis-kernel
representation with full rank ¥ and nonsingular S. Such a representation we
call a regular basis-kernel representation. Under the regularity assumption,
the active space of @ is R(Y). A nonregular basis-kernel transformation can
easily be transformed into a regular one, as follows.
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Rt Rio
0 0 )’

be a rank-revealing QR decomposition of Y (see, for example, [2,3]), that is,

Ri1 is nonsingular and rank(Rq1) = rank(Y'). Then, Q(Y,5) = Q(Y, 5’) with
S = RPTSPRT. Thus, we can assume without loss of generality that Y is
of full rank.

Now suppose S is singular. We know from the proof of Lemma 2 that
S = USU? for some U and S of full rank. Thus, Q(Y,S) = Q(Y,S) with
Y = YU. We therefore assume in the rest of the paper that a basis-kernel

Suppose Y is rank deficient. Let YP = YR, with R = (

representation of an orthogonal matrix is regular unless explicitly stated oth-
erwise.

2.3 Triangular Kernels

For a given Y, the triangular kernel of Example 4 presents another way
for computing the compact WY form of a product of Householder reflectors.
In fact, any orthogonal matrix can be expressed in basis-kernel form with an
upper or lower triangular kernel.

Theorem 5 Any orthogonal matriz () can be expressed as Q = 1 — Y SY7T
with a triangular kernel S.

Proof. Let Q = Q(Y,5) be an orthogonal matrix of degree k. It is sufficient
to prove the claim that there is a (unit) lower matrix L such that S = LTRL
for some upper triangular matrix R, since Q(Y' LT, R) will be a basis-kernel
representation of () with triangular kernel. The claim holds for orthogonal
matrices of degree k = 1. Let Q(Y,.5) be an orthogonal matrix of degree k >
1. Suppose the claim holds for all matrices of degree less than k. Partition

S—l
T
_ g1 _ [ T a
res- (78

The orthogonality condition (11) implies 27 = ¢f (Y'Y )e; # 0. Thus,

LY = ( 0 (a ;_lb)T ) : (13)

with

_ 1 0 _ 7 T
Ll_(—b/T ]), and T3 =14 —ba" /1.

8



Substituting (13) into (11) results in

L1<YTY>L1T=(S (aib)T)+ (({5) TO) "

Now let
T
Y, = Y( b]/T ) ,and S =773

We know from (14) that /—Y 1.5 1Y ; is an orthogonal matrix of degree k—1.
With the induction hypothesis, there is a unit lower triangular matrix L_4
and an upper triangular matrix R_; such that 54 = LER_lL_l. With

(1 Tt (b—a)' LR
L= ( I, )Ll, and R = ( R} .

we then have S = LT RL.

Similarly, we can find nonsingular upper triangular matrices K and lower
triangular matrices L such that S = R'LR , S = LYR'L, or S = R'LTR.
The last two decompositions follow from the fact that ST is the kernel of
Q. ]

Example 4 shows that, for a fixed Y, the upper (lower) triangular kernel
is unique. An orthogonal matrix, however, has more than one representation
with an upper (lower) triangular kernel. Let Q(Y,S) be a representation
with upper triangular kernel S. There is an orthogonal matrix U such that
UTSU is also upper triangular [6, p. 385], and hence Q(Y U, UTSU) is another
representation of () with triangular kernel.

From the compact WY representation we know that the product of k
Householder matrices can be expressed in basis-kernel form. The converse
holds true as well.

Corollary 6 Any orthogonal matrix of degree k can be expressed as a product
of exactly k nontrivial Householder reflectors.

Proof. We prove the corollary by induction on the degree k of the orthogonal
matrices. The corollary holds for the case of £ = 1 since an orthogonal matrix
of degree 1 is by itself a Householder matrix. Let £ > 1, and assume that the
theorem is true for all orthogonal matrices of degree < k — 1. Let () be an
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orthogonal matrix of degree k and Q = I — Y'.SYT with an upper triangular
kernel S. The orthogonality condition implies

S = (trin(YTY, 1) + diag(YTY)/2)7".

If we partition Y as Y = (y,Y7), then

T
(s —sy Y S,
s= (7).

and hence
Q=1- ysyT + ysyTYJS_lYE — YS_lYE =1 - ysyT)(I — Y_ls_le),

where (I — ysyT) is a nontrivial Householder matrix and (I — Y ;5 ;Y1) is
an orthogonal matrix of degree k — 1 and can be expressed, by the induction
hypothesis, as a product of exactly & — 1 Householder matrices. [

Notice how easy it is to determine the representation of () in terms of
Householder matrices from a basis-kernel representation with triangular ker-
nel. The Householder vectors are simply the columns of the basis Y, and
the scaling factors are the corresponding diagonal elements of the kernel S.
Since the basis-kernel representation with triangular kernel is not unique, the
representation of an orthogonal matrix as product of Householder matrices
is not unique, either.

Generalizing the proof of Corollary 6, we note the following result for
factorization and composition of arbitrary orthogonal matrices in basis-kernel
representation with (block) triangular kernel.

Corollary 7

_ T
Q1(Y1, 51)Q2(Y2, S3) = I — (11, Y3) ( Sy Sl(lngz)Sz ) (V0. 1)".

Using this formula, one can, for example, quickly assemble random orthogo-
nal matrices in a “binary-tree” like fashion from lower-degree random orthog-
onal matrices, deriving, in effect, a parallel block version of the Householder-
oriented approach by Stewart [11].
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2.4 Block Orthogonal Transformations

The following theorem shows that, if there is an orthogonal transforma-
tion that transforms an m x k£ matrix A into a matrix B, k < m, the degree
of () concerned need not be larger than k.

Theorem 8 Let A and B be two m-by-k matrices, k < m. If B = QA for
some orthogonal matriz (), then () is either of degree no greater than k or
can be replaced by an orthogonal factor of its own with degree no greater than

k.

Proof. Let @ = Q(Y, 5) be a basis-kernel representation of ). Suppose the
degree of () is greater than k. Let YTA = U ( ]\04
of XT{L with M € R™", where r < k is the rank of YT{L Then Q(Y,5) =
Q(Y,S), where Y = YU and § = UTSU. Partitioning Y = [Y1,Y3], where
Y] is n x r, we then have Y,/ A = 0. From the proof of Theorem 5, S = LRL"*
for some lower triangular matrix L and upper triangular matrix R. Thus,
Q(Y,5) = Q(Y,R) with Y = Y L. If we partition Y = (¥7,Y;) in the same
Rt Rio

0 Ry

be a QR-factorization

fashion as Y and partition R = ( conformingly, Corollary 7
implies

Q = Q(YhRn)Q(Yz,Rzz)

and YQTA = (. We therefore have
B=QA=Q(Yi,Ri)A,

as claimed. [
Not surprising, when a and b are vectors such that ||a||z = ||b]|2, there is
always an orthogonal matrix @) of degree 1(i.e., a Householder matrix) such
that b = Qa.
In matrix computations, the following elimination problem is fundamen-
tal. Given an m x k matrix A, determine an orthogonal matrix () such

that
QA:(ﬁ), (15)
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for some k-by-k matrix C'. The usual Householder-based approach constructs
an orthogonal matrix () and an upper triangular matrix C' in a column-by-
column fashion as a product of £ Householder vectors. Using the WY repre-
sentation, one then can deduce a basis-kernel representation with triangular
kernel.

Theorem 8 and its proof lead to the following conclusions:

e The elimination problem (15) can be solved with an orthogonal matrix
of degree at most k.

e Finding ways to determine orthogonal matrices directly in terms of
their basis and kernel (as compared to products of Householder matrices
or Givens rotations) seems preferable to arrive at computationally more
advantageous procedures.

e The minimal degree of a solution () to a transformation problem in a
k-dimensional subspace could be even lower that &, which would result
in a lower-rank, and hence computationally less expensive, ().

3 Geometric Properties

In the introduction, we reviewed the geometric properties of reflectors
“active” in one-dimensional or multidimensional subspaces and of rotators
in two-dimensional subspaces. In Section 2, we showed that the basis-kernel
representation is a natural approach for representing, composing, and de-
composing orthogonal matrices. This section shows that the basis-kernel
representation also makes it easy to understand geometric properties of or-
thogonal matrices.

3.1 The Basis and Active Subspace

The following theorem shows how Y defines the active space and S spec-
ifies the transformation in the active subspace.

Theorem 9 . Q=& 2 € R(Y) .

2. For any u € R(Y), there exists one and only one vector b such that
w=YSTh, and Qu = —v, where v = Y Sb.
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Proof. Part 1. For any z such that Qz = 2, we have Y. SY Tz = 0. Since YV’
has full rank, Y SY Tz = 0 if and only if SYz = 0. Thus, z € R(Y)* if and
only S is nonsingular.

Part 2. Since Y is a basis for its own column space and S is nonsingular,
any vector u in R(Y’) can be uniquely represented in the form u = Y S*b for
some vector b. By the orthogonality condition, we have

Qu=(I-YSYNYSTh=YSTh—Y(S+5M)b=—-YSb=—v.

|
Thus, when k£ < m, the matrix () has eigenvalues at 1, and the orthogonal
complement of R(Y) is the invariant subspace of @) corresponding to its
eigenvalues at 1. Further, on R(Y'), vectors u = Y'STh and v = Y Sbin R(Y)
are images of each other under the mappings ) and Q~', respectively.
With respect to the composition of orthogonal matrices, Corollary 7
shows that, if R(Y;) N R(Yz2) = {0}, then A(Q:1Q2) = R(Q:1) & R(Q1),
or degree(()1Q)2) = degree(()1) + degree(Qz). On the other hand, if Y2 = ¥}
and Sy = S}, then the degree of Q1Q, = I is zero. In general, we have the
following.

Corollary 10 Let @)y and @)y be two orthogonal matrices. Then,
A(Q1Q2) C A(Q1) B A(Q2).

3.2 The Kernel

While the basis Y determines the space acted upon by @), the kernel S
specifies the action taken in this subspace.

Theorem 11 1) A(Q) = A(=SS~T)u {1}.
2) det(Q) = { L, ifk is cven,

—1, otherwise

3) Qe =—x = ax € R(Y) if and only if S is symmetric.

Proof. Part 1. When S is nonsingular, the orthogonality condition can be
expressed as

S(YTY)y=85" 41
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For any vector y € R(Y'), there exists a unique vector b such that y = Y'b,
and

Q=1 —-YSYHYb=Yb-Y(SS™' + )b=-YSS™Tb.  (16)
In particular,

QY = —Y(5571).

By Theorem 9, R(Y) is the invariant subspace of @) corresponding to all of
its eigenvalues not equal to 1. Therefore \(Q) = A\(—=SS~T)uU {1}.
Part 2. We know from Part 1 that det(Q) = det(—SS~T). We then have

det(Q) = (—1)Fdet(S)det(S™1) = (—1)F.

Part 3. From Part 2 of Theorem 9 and Part 1 of Theorem 11, it remains
to show that Qx = —ax for any « € R(Y) implies that S is symmetric. We
see from (16) that

Qxr = —x, Ve e R(Y),
& YSSTh=Ybh VbeRF
& SSh=1
and the symmetry of .S follows. [

Note that the determinant of H does not depend on the symmetry of H
and that S cannot be skew-symmetric.

Theorem 11 implies that reflectors and symmetric orthogonal matrices
are really one and the same.

Corollary 12 An orthogonal matriz is a reflector iff it is symmetric and not
equal to the identity.

Theorem 11 also illustrates how ) acts upon the subspace R(Y). The
matrix (—SS~7) is the representation of @ in R(Y') with respect to the basis
Y, and it has eigenvalues on the unit circle in the complex plane, but not
at 1. Let g; be an eigenvector of —SS~T corresponding to its eigenvalue

cos(6;) + ¢sin(6;). Then,
Q(Ygj) =Y (=55"")g; = (Yg;)(cos(8;) + isin(6;)).

That is, for an arbitrary vector in R(Y’), its components along Y¢; are “ro-
tated” by 0, respectively. When () is a block reflector, the components are
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rotated uniformly by the same angle 7; that is, the sign of vectors in R(Y)
is simply flipped.

If @ should act as other than a reflection on R(Y'), S must be non-
symmetric and —SS~T must have truly complex eigenvalues, which exist in
conjugate pairs. Taking into account Lemma 14, we then have the following
corollary,

Corollary 13 If Q) is nonsymmetric, then its kernel S can be expressed with
respect to properly chosen Y wvia

~ss e (|G G ) om

where B = —1I or the empty matriz, and © = diag(d;), sin(d;) # 0.

The first diagonal block of (17) can be viewed as a block Givens rotator.
Corollary 13 shows that an orthogonal matrix divides its active subspace
into two subspaces: it acts as a reflector in one of them and a rotator in the
other. An orthogonal matrix of odd degree always has a nontrivial subspace
that it acts on as a reflector.

As it turns out, there is a close relationship between SS~7 and Y when
Y is orthonormal.

Lemma 14 Let Q be an orthogonal matriz and Q = 1 —Y SYT be a reqular
basis-kernel representation of (). The following statements are equivalent:

o Y is orthonormal.
o [ — 5 is orthogonal.
o SST is orthogonal.

Proof. We have seen from Theorem 1 that if Y is orthonormal, then I — S
is orthogonal. Now suppose that I — S is orthogonal. Then S = I 4+ SS~T.
At the same time, the orthogonality condition (9) implies that

SYTY)y=1+Ss1.

Together, they imply that YTY = I. [
Corollary 13 and Lemma 14 allow us to derive a particularly simple canon-
ical form for S—1.
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Theorem 15 For any orthogonal matrix of degree k there exist an orthonor-
mal basis Y and a kernel S such that

Lot
S — 5 ] D 5
-D 1

where D is either zero or a nonsingular diagonal matriz.

Proof. Let @ = Q(Y,95), and, invoking Corollary 13, assume that Y is

orthonormal and (17) holds. From the proof of Lemma 14, we have
STt =(I+ 55T

The theorem is true for the special case that SST = I with D = 0. As
another special case consider SST to be a 2-by-2 Givens rotation G(0) with
sin(#) # 0. We then have

1 + cos(0 sin(d cos(0/2) sin(0/2
[+G(0) = ( —sin(é)) 1+ CE)SE@) ) = 2cos(0/2) ( —sir(l(e/%) Cos((G/Z)) ) ’

and since sin(#) = 2sin(6/2) cos(0/2) # 0,

(I+G(9)" = ( Cot(lg ) ~ ot0/2) ) |

The claim of the theorem in general easily follows from (17). [

4 The Generalized Cayley Representation

For any skew-symmetric matrix B, the matrices
(I+B)I—-B)"and (I+B)(B—-1)" (18)

are orthogonal. The former does not have eigenvalue at —1, and the latter
does not have eigenvalue at 1. Conversely, an orthogonal matrix ) can be
represented in one of the above forms with some skew-symmetric matrix B
as long as () does not have eigenvalues at both 1 and —1. Representation
(18) is known as the Cayley representation [5] or the Cayley transform of B.
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Note that the Cayley representation does not include symmetric orthogo-
nal matrices except [ and —1, nor does it include the nonsymmetric matrices
that have both a nontrivial “inactive” subspace and a nontrivial “active” re-
flection subspace. We can, however, generalize this representation to cover
all orthogonal matrices, by combining the traditional Cayley representation
and our basis-kernel representation.

Theorem 16 Let Y be an orthonormal matriz with k columns. Then () is
an orthogonal matriz with active subspace R(Y') if and only if

Q=I1-Y(I—(B+I)(B-1)"HY" (19)
or some Skew Symmetmc matrix . oTeover, 5 Symmetmc ] = U.
" . B M . i B — 0

Proof. It can be checked directly that, for a skew-symmetric matrix B, ()
of (19) is orthogonal. On the other hand, if @) is an orthogonal matrix with
active subspace R(Y'), then () can be represented as Q = I — Y SYT for some
S that satisfies the equation I = YTY = S~ 4+ §=T Thus, B=1—-25""1is
skew-symmetricand S = I+ 5SS~ T =1 — (B+1)(B—1)"'. The orthogonal
matrix ) is symmetric iff S = 2/ and iff B = 0. [

Note that, for the special case that @) has full degree (i.e., no eigenvalue
at 1), the generalized Cayley representation (19) becomes the traditional one
when one chooses Y = [.

Theorem 16 implies that, given a subspace Y of dimension k, we have
k(k—1)/2 degrees of freedom in choosing a nonsymmetric orthogonal matrix
so that A(Q) = Y, but there is only one symmetric orthogonal matrix whose
active subspace is ).

5 Conclusions

This paper introduced the basis-kernel representation Q = I — Y SY7
of an orthogonal matrix. We showed that any orthogonal matrix can be
represented in this form, in particular with a triangular kernel, and showed
the relation to the familiar representation of orthogonal matrices as products
of Householder matrices.

We also showed how the basis Y determines the subspace that () acts on in
a nontrivial fashion, and how the kernel S determines the action taken on this
subspace. This led to a particularly simple representation of —S57 and S—1
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which explicitly shows how () acts on its active subspace as a composition
of rotators and reflectors. We also showed that reflectors are exactly the
symmetric orthgonal matrices.

Lastly, we generalized the Cayley representation to cover all orthogonal
matrices and showed that, given a particular subspace, there is great freedom
in choosing nonsymmetric orthogonal matrices acting upon it, but that sym-
metric orthogonal matrices are uniquely determined by their active subspace.

We also point out that the basis-kernel representation, and the theory
we have developed for it, deals directly with ¥ and S, whereas the usual ap-
proaches to orthogonal matrix computations deal principally with elementary
operations such as Givens reflectors, Jacobi rotators, or Householder reflec-
tors. Thus, we believe that this representation has profound implications for
numerical computations, in that it opens the door to different approaches for
deriving orthogonal matrices with desired properties. For example, the proof
of Theorem 8 hinted at the possibility for finding lower-rank orthogonal ma-
trices for block elimination problems than the orthogonal matrices provided
by the usual approaches.
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